
An Architecture supporting Knowledge flow in Social

Internet of Things systems

Orfefs Voutyras, Panagiotis Bourelos, Dimosthenis Kyriazis, Theodora Varvarigou

National Technical University of Athens

Athens, Greece

orfeasvoutiras@ gmail.com

Abstract— Recently, the idea that the Internet of Things (IoT)

systems can be advantaged in many ways by integrating social

networking concepts is gaining momentum. In this paper we

present the social approach that the COSMOS project

introduces. COSMOS supports knowledge flow between Things

in order to provide a system that learns, observes and evaluates

the usage and communication patterns and generates new

knowledge. It focuses on the value of experience and experience-

sharing and investigates models and principles designed for the

social networks, which would provide it with the potential to

support novel applications in more effective and efficient ways.

Keywords— Internet of Things; Knowledge Management;

Social Internet of Thing.

I. INTRODUCTION

The Internet of Things (IoT) is very challenging as it leads
to networks connecting a huge number of Things that operate
on different administrative domains. The scale and the
complexity of the formed networks require new approaches
that will make objects able to cooperate in an open and
reliable way. Taking into consideration the rate at which IoT
devices are deployed and used in different applications, one of
the main challenges refers to the efficient and optimized
management of these entities. Future internet applications tend
to exploit a big number of devices, which highlights the need
for distributed management approaches given that centralized
mechanisms are either non efficient (for a huge number of
things) or not applicable (e.g. due to communication
problems). Furthermore, the Things are owned and operated
by different administrative domains, thus centralized
approaches in many cases cannot be used for their
management given the diversity in access rights. What is
required refers to techniques that will enable the formulation
of subsets /sub-networks of Things in which management
access is feasible. What is more, management decisions
usually do not take into account the context under which the
Things operate (e.g. specific object may be used with different
configuration parameters in different applications).
Approaches are required that will allow management
decisions to incorporate situational awareness and propose

management actions based on them. Finally, an additional
challenge with respect to IoT management relates to the
autonomous reasoning of Things on a context-aware basis.
Autonomous management will integrate different types of
knowledge (e.g. device-specific, situational, application-
specific, administration-related, etc) and trigger decisions
accordingly.

The COSMOS project [1] will provide a framework for the
decentralized and autonomous management of Things based
on service-, interaction-, location- and reputation-oriented
principles, inspired by social media technologies. COSMOS,
following the IoT-A reference model [2], supports real-virtual
world integration by representing Things and groups of
Things of the real world via their counterparts in the
Cyberworld: Virtual Entities (VEs). VEs may have their own
goals and be equipped with an internal logic in order to
achieve them. They acquire perception through accessing
sensor readings via IoT-services and can impact their
environment or undertake physical actions using actuators via
other IoT-services. Finally, VEs may interact with each other
for various purposes like collaboration (sharing a common
goal), cooperation (getting help from other VEs in order to
achieve specific objectives), advertising of their
properties/attributes, offering actuation services etc. Our
approach follows the Social Internet of Things (SIoT)
paradigm [3], as it defines, monitors and exploits social
relations and interactions between the VEs, and uses
technologies and services from the domain of the social
media.

In order to achieve self-management and autonomicity we
follow the MAPE-K model [4], as we estimate that it is very
close to the nature of the IoT management. The IoT can
provide to the MAPE-K all the data it needs to complete the
autonomic cycle, while the adoption of suitable solutions for
the implementation of the MAPE-K components can provide
to the IoT optimal self-managing functionalities. However, we
need to make a new approach dictated by the social view of
the Things that is adopted. In this direction, we extend the
MAPE-K loop by introducing two new components, Social
Monitoring (SM) and Social Analysis (SA) [5].

Ontologies (example in Fig.1) are used for the description
of the VEs, as they provide a rich vocabulary for the general
domain knowledge, enabling the user to better express his/her
requirements and submit queries, leading to greater precision
and recall rates. Moreover, formalization of ontologies
improves retrieval, similarity adaptation and learning [6]. It is
of major importance to enhance the VEs with the key features
of a social intelligent entity, which means that a VE has social
characteristics, can acquire knowledge through various means,
such as learning from experience [7], and can reason with
knowledge to make plans, explain observations etc. The latter
will allow VEs to learn based on their own experiences or
those of other VEs, while situational knowledge acquisition
and analysis will make them aware of conditions and events
affecting their behavior. Socially-enriched coordination will
consider the role and participation scheme of VEs in and
across networks. Management decisions and runtime
adaptability will be based on Things security, trust, location,
relationships, information and contextual properties. Extended
complex event processing and social media technologies will
extract only the valuable knowledge from the information
flows, while workload-optimized data object stores will
facilitate efficient storage by also exploring the interplay
between storage and analytics on networks of data objects.

The rest of this paper is organized as follows: Section II
discusses the knowledge and experience concepts and presents
the possible types of learning and communication for VEs.
Section III introduces the social properties of the VEs and
comments the value of friendship between them. Section IV
refers to the management components needed to support the
socialization of the VEs. Finally, Section V concludes the
paper.

II. LEARNING THROUGH COMMUNICATION

A. The concept of Knowledge

The IoT will create a flood of real world information to the
virtual world. Our applications will be considerably enriched,
as they will be more and more aware of what happens in the
real world, in real time, everywhere. With a trillion sensors [8]
embedded in the environment, all connected by computing
systems, software and services, the future IoT platforms have
to deliver data and information management mechanisms to
handle the exponentially increasing “born digital” data. The
transformation of this huge amount of raw data into knowledge
is one of the biggest challenges behind the IoT. There is an
entire cycle of data processing up to the generation of
cooperative knowledge networks. These knowledge networks
can feed complex hierarchical feedback control loops, since
sensorial data is very important for decision making. Decisions
made on the virtual side can be reflected on the real
environment helping us to better use our resources. Hence, a
first step to designing the general architecture of a project on
the IoT domain and realizing its capabilities and chances for
evolution is the definition of its own Knowledge Management
(KM) cycle.

Knowledge management is the process of capturing,
developing, sharing and effectively using knowledge and
summarizes all activities with the goal of using knowledge in

a more efficient and effective manner, achieving certain
objectives. A Knowledge Pyramid, the DIKW Pyramid [9], is
usually used for the representation of purported structural
and/or functional relationships between data (D), information
(I), knowledge (K) and wisdom (W). In the literature,
typically information is defined in terms of data, knowledge in
terms of information and wisdom in terms of knowledge.
Generally, when we take data and put it in context we have
information, when information becomes actionable it is
transformed into knowledge and when pieces of knowledge
are consolidated, with the help of experience, wisdom is born.
In our DIKW Pyramid, Data are the raw-data which are
collected from the VEs through their IoT-services. Physical
objects like buses or houses which are represented by VEs
will have a huge number of embedded sensors, continuously
“feeding” COSMOS with data regarding the temperature and
humidity of the environment, the velocity of the buses etc.
Information is the result produced by analyzing the raw-data.
Suitable mechanisms make possible the detection of simple or
complex events of the physical world around the VEs. For
example, analyzing the data offered by the sensors of the
buses or the houses, the detection of events like “fire” or
“traffic” becomes possible. Knowledge includes problems or
situations detected (e.g. “fire”) associated with specific
solutions, implemented through IoT-services. In other words,
Knowledge includes directions that specify how the VEs are
going to react in changes of their environment in a well-
defined way. For example, a house may include in its
Knowledge Base (KB) the scenario of the problem “fire” and
“know” that the solution to the problem is “inform the fire
department”. Knowledge is a store of information proven
useful for a capacity to act. This level gives the VEs the
advantage of learning from previous experiences. Finally,
Wisdom is born using high-level reasoning techniques, such as
Case-Based Reasoning (CBR) [10] and Rule-Based Reasoning
[11], which give to the VEs the ability to reason and
understand their situation and take decisions on their own,
thus producing Knowledge on their own. Things attaining this
level could be characterized as cognitive, intelligent or Wise,
as they have the capacity to acquire, adapt, modify, extend and
use knowledge in order to solve problems.

B. The concept of Experience

The proposed approach provides the VEs with the
advantage of learning from previous experiences. Experience
is usable knowledge acquired through the use of collaborating
communication techniques between two or more individuals.
Different types of experiences are defined, arising from the
correlated phases of our control loop approach, which is
adopted for the implementation of the project regarding VEs’
management. Experience can be a piece of knowledge
described by an ontology, a model resulting from Machine
Learning or contextual information (Fig. 1). However, we
focus mainly on the representation of experience through
Cases as defined in the CBR technique. A case can be
considered as a combination of a problem with its solution,
whereas a problem consists of one or more events. In other
words, a case is a kind of rule for an actuation plan, which is
triggered when specific events are identified [12].

VE3

VE2

case not found

VE1

CB

Friend List

Planner

KB

case found

TTL=1

individual
learning

X
P

-s
h

a
ri

n
g

re
q

u
e
s
t

VE3

VE2

case not found

VE1

CB

Friend List

Planner

KB

case found

TTL=1

individual
learning

X
P

-s
h

a
ri

n
g

re
q

u
e
s
t

Fig. 1. Classes of the COSMOS ontology.

Each VE may maintain its own Case Base (CB) locally as
part of its KB. Storage of experience in a local or central KB
[13] depends on whether the individual’s knowledge needs are
constant or opportunistic. Such a categorization of needs will
be primarily based on the “domain” membership of individual
VEs as well as technical limitations that may be present. A
KB can be shared between VEs with suitable social
characteristics, something that improves the decision making
mechanisms. Moreover, VEs representing weak devices that
do not have their own KB can take advantage of the KB of
their social group.

Finally, support of experience sharing gives to a VE the
opportunity to ask for help from other VEs and find the most
suitable solution by leveraging social features. Of great
importance is the fact that the concept of brokers appears in
experience sharing between VEs and their Friends.

C. Types of Learning and Communication

 VEs have three types of learning cycles which are
complementary and may occur in parallel [14]. These may
interact with each other in complicated ways and are the
following:

 individual learning: Individual learning will take the
form of Cases creation and storage inside the VEs. By
utilizing sensor readings and actuator values, each VE
is capable of creating complete Cases of a complexity
proportional to its technical abilities. The individual
enrichment of the local CB can serve as a basis for the
second stage of learning.

 learning through communication: This second stage
comes into play when the locally stored knowledge is
not sufficient for the needs of a VE. Such needs may
be constant or opportunistic in nature, a distinction
which helps segregate the actions taken on the
provided knowledge. In this case, a VE uses the
experience sharing (XP-sharing) service and targets a
group of Friends that may have the required
knowledge. Friends are maintained in a Friend List in
the KB. When a VE decides to initiate the experience
sharing mechanism with its Friends, it specifies the
“depth” of communication (Fig 2). That is important
mainly because of the recursive way the experience
sharing method works, meaning that if a Friend of the
original VE does not locate a suitable case inside its
own local CB, it will check the depth required
(mentioned TTL/time-to-live of the experience query)
and initiate a new version of experience sharing this

time directed at its own Friends. Therefore brokers are
dynamically designated taking into account that Friends
are willing and able to act as such for their respective
Friends. It is also worth noting that respective brokers
will not claim success as their own since the returning
knowledge is also annotated with the id/name of the VE
that successfully provided this knowledge. This
approach is related to the “six degrees of separation”
concept that has become quite popular at the domain of
social networks [15].

 learning through a knowledge repository: Finally, if
both previous knowledge acquisition mechanisms fail,
VEs possess the ability to connect to a central KB. It
is worth mentioning that experience will be as a final
resort stored centrally in the COSMOS repositories so
that a “purge” of acquired knowledge does not result
in loss of experience.

We can make a distinction between two forms of learning
through communication:

 supply driven learning: In supply driven learning, an
individual VE acquires new experience and
communicates it to the Groups of VEs (GVEs) it
belongs to.

 demand driven learning: In demand driven learning, a
VE comes along a new event/problem and asks its
Friends whether they have a solution for this problem.

Fig. 2. Learning through communication.

In both cases, two factors should be taken into account:

 overhead: the number of useless messages that are
acceptable from the recipients side.

 hit rate: the amount of VEs that get the message
compared to the amount of VEs that should have
received it.

Regarding the dissemination mode, there are three options
to choose from (adopting the terminology from the
advertising, marketing and communications domain):

 Broadcasting: Sending the message to every available
VE. This way, the hit rate is maximized at the cost of
a large communication overhead. An advantage of
sending the message to a large audience is that it

creates redundancy in the knowledge assets of the
system, which facilitates knowledge development
through combination. However, for most IoT use-
cases, this is not an option due to scalability issues. As
such, COSMOS does not provide any broadcasting
mechanisms.

 Narrow casting: Sending the message to every VE
that may be interested in a specific topic. This option
combines the advantages of the other two, but it
requires the VEs to state beforehand which kinds of
messages they are interested in (e.g. by means of a
user profile). This in turn requires that there is a
predefined set of possible topics or, otherwise, that
there are guidelines for creating new topics. In our
case, data can flow through the system via a Message
Bus which is organized into topics. Each VE can
publish and/or subscribe to them. The whole process
is supported by a Complex Event Processing (CEP)
component which is responsible for processing data
and analyzing them in real time, according to
applications’ specific logic. If a certain event is
detected by the CEP component, this may trigger the
generation of certain messages to a new topic.

 Personal casting: Sending the message only to VEs
that are directly involved to its content. This is the
most efficient way of communication, as only VEs
that can directly help or can offer the new required
knowledge are informed. In this way, the
communication overhead is kept to a minimum, which
is important for maintaining the communication
channel alive. That is why the VEs need Friends and
we should develop a social environment that can
support their discovery.

As a final note, the technical solution used for learning
through communication involves RESTful interfaces [16] that
connect individual VEs on a peer to peer basis. Such a method
increases the hit rate but has the side effect of taxing the
network resources when a highly social VE requires
knowledge (personal casting). On the other hand accessing
knowledge through non targeted means, like topics on a
Message Bus, guaranties a low overhead but increases the
probability of the request not reaching all intended recipients
(narrow casting).

III. SOCIAL PROPERTIES OF THE VIRTUAL ENTITIES

The need for effective and decentralized discovery of
Knowledge/Experience by using the Social Internet of Things
paradigm [17] brings us to the most important social concept
that has to be implemented: friendship between VEs. In the
spirit of implementing an autonomous and decentralized
communication model, it is imperative to understand that
communication between VEs will, after a certain point, be
completely platform independent. This does not mean that the
ontology will never be accessed, but that after social
connections have been established, VEs are expected to
communicate directly with each other. Friendship between
VEs will be a guideline, a road map of communication, as
each VE will maintain a group of VEs which have been

deemed to be in a position to help it or receive help from it.
The choice of Friends will be based on other social criteria,
like their domains and trust indexes, with the eventual
provision that friend lists are to be dynamically maintained.
The social ontology possesses the property “hasFriend” which
is object-type and non-symmetric. That means that if VE1 is
Friend with VE2, then VE2 will not necessarily have a
“hasFriend” property with VE1 as the target. In that sense, the
concept of “Friends” matches this of Twitter “Followers”
(non-mutual relationship) rather than Facebook “Friends”.

It is important to state that even though the general
ontology uses individuals to signify VEs, the local VE storage
could use other means to store Friends, for example using only
their URIs/IP address and ports. Finally, it is worth noting that
in a fashion similar to social media, Friends of Friends can
also be mined and used for further recommendation. The basic
idea is that already established friendship patterns can offer an
invaluable aid in determining VEs with similar interests to the
VE accessing the ontology, requesting a recommendation.

The choice of suitable Friends is based on two composite
criteria: Relevance and Dependability. Relevance includes the
concepts of Homophily [18] and Distance Proximity, while
Dependability refers to Reliability, Trust and Reputation
(Fig.3). The analysis of the corresponding social properties
follows:

Fig. 3. Example of VEs’ properties.

 Domain (Homophily): One of the main properties
that should be included in the ontology of a VE is its
domain. This property is quite important, as it is the
first step to identifying the different groups into which
VEs are organized and their different relations. The
platform should give the developer the option to
choose from a variety of diverse domains. As a result,
we have to identify the different values that could be
given to the social parameter “domain”. Some ideas
are: Traffic Management, Waste Management,
Environment Monitoring, Smart Water, Smart
Metering, Security & Emergencies, Logistics,
Industrial Control, Home Automation, eHealth. The
“domains” of the VEs could accelerate the discovery
mechanisms and give more information for further
social analysis. On the topic of domains, it is
important to state that any VE wishing to register to
the COSMOS platform is imperative to have at least
one association with a certain domain. The list of
possible domain names will be as stated a priori

known to VE developers so that input of VEs to the
platform's registration component will be efficiently
handled. By dividing our ontology's scope into
domain-specific parts we also achieve a functioning
segregation of available IoT-services. That means
that, if a certain VE exposes services with a multitude
of purposes, intra-VE communication will be more
effective as far as both discovery and service
recognition are concerned. Therefore, if a certain VE
desires a look-up of services pertaining to traffic
management, domain identifiers can be used to limit
the time needed for a query response. Also, regarding
the VE discovery, if a VE has no connections to
initiate communication in order to enrich its case base
or its group of accessible services, the platform can
initiate a process of recommendation. In the general
ontology, membership to a domain is signified by the
object-type property “hasDomainName”. This
property connects individuals belonging to the class
“VirtualEntity” with individuals that are domains.

 Physical Entity (Homophily): This characteristic
indicates the type of the actual physical entity
represented by the VE. While it is not a strict
segregation, similar VEs should be able to formalize
friendship relations easier than completely diverse or
unrelated ones. This attribute is represented in the
social ontology by the use of “isPhysicalEntity” and is
possible to take values like “BusStop”, “HQ”,
“TrafficLight”, “bus”, “car”, “house” etc.

 Location (Distance Proximity): The location property
can take the following values:

 Fixed: for entities established in a permanent structure,
not intended for portable operation, e.g. house.

 Portable: for entities fitted in a temporary location, e.g.
laptop.

 Mobile: for entities that can move and by their nature
change their position frequently and continuously e.g.
vehicles, mobile phones.

 Geo-location (Distance Proximity): In specific cases,
we can use data of Geo-location to ensure friendship
suggestions are valid. If for example the VEs
represent houses in a domain topic of “Home
Automation” or “Environment Monitoring”, then
proximity with each other should be a consideration
for the platform, as geographical locality implies
relatively similar needs in the environmental variables
that are to be balanced (temperature, moisture). That,
in turn, implies the use of similar IoT-services as
responses (solutions) to common problems. Geo-
location variables are represented in the ontology
through the use of the “hasGeoLat” and “hasGeoLon”
data-type properties that use a range of float numbers
to accurately store latitude and longitude respectively.
We should note that too accurate positioning is not
required in most IoT use-cases.

 Dependability Indexes: The social ontology contains
three social indexes that define the Dependability of a
VE:

 Reliability Index: an absolute indicator of the
performance of the physical entity that quantifies the
efficiency of its sensors and actuators functionalities,
relative to their normal operation. The index is
represented by the data-type property
“ReliabilityIndex” which contains a float from 0 to 1.

 Trust Index: a counter which states how many times a
VE has successfully shared its CB and/or IoT-services.
Coupled with the concept of feedback and through
refinement of its calculation, we can use this index as a
means to simulate social mobility in the platform, as
Trust will be one of the most important components of
friendship recommendation. The index is represented
by the data-type property “TrustIndex” which contains
an integer.

 Reputation Index: a counter which monitors how
many times the VE has received a request (how many
“hits” it has). It is a cumulative and comparative
indicator. The index is represented by the data-type
property “ReputationIndex” which contains an integer.

Finally, a very important property of a VE, which could be
characterized as hybrid, since it belongs to both the Relevance
and Dependability criteria, is the Owner ID. It represents the
physical owner (e.g. individual, organization) of a VE and
determines friendship prioritization based on common
ownership of VEs when other criteria are met too.

Individual VEs base the structuring of their local
ontologies on the domains that they belong to. By using
auxiliary ontologies provided by the platform they can import
the ontology structure needed to store services and individuals
such as Friends.

IV. MANAGEMENT COMPONENTS

The framework supports various components that aim at
the “socialization” of VEs. Such components are (Fig. 4):

Fig. 4. Management components in the COSMOS architecture.

 The Profiling and Policy Management (PPM)
component. It assigns a unique ID to the VE and
enables the entry of all the information needed for the

description of the physical entity through the domain
ontology of the corresponding VE. Moreover, it
enables the owner to determine the social “openness”
of the VE: the IoT-services that can be used by other
VEs, the kind of experience that can be shared, the
sets of VEs which can access such information etc.
However, the “openness” of VEs is affected by the
social selfishness, a basic attribute of human beings.
Thus, while designing this component, the concept of
Opportunistic loT [19] should be taken under
consideration.

 The Friends Management (FM) component is
responsible for creating and maintaining the list of
Friends that a VE has. In other words, it allows VEs to
initiate, update and terminate their friendship with
other VEs on the basis of the owner’s control settings.
It provides the owner with the option of setting new
Friends to his/her VEs, offers friend-recommendation
request services and monitors the Friend List of a VE
regularly or on demand in order to find any Friends
whose Dependability is no more the desired one and
thus should be removed. For this purpose, it
communicates with the SA component.

 The Social Monitoring (SM) component. It contains
all the main tools and techniques that are used for the
monitoring of the social properties of the VEs, like
Trust and Reputation. Its main objective is to collect,
aggregate and distribute monitoring data (events)
across the decision making components of the
collaborating groups. The events are generated by
interactions in response to - directly or indirectly -
user actions (e.g. registering a new VE) or VEs’
actions (XP-sharing). Social Monitoring “feeds” the
VE Registry.

 The Social Analysis (SA) component. Based on the
results of the Social Monitoring component and taking
advantage of Social Network Analysis (SNA) [20],
the SA component is used for the extraction of
complex social characteristics of the VEs (e.g.
centrality), as well as models and patterns regarding
the behavior of the VEs and the relations between
them.

Figure 4 illustrates the way the aforementioned
management components are involved when a VE sends to the
platform a friend-recommendation request.

V. CONCLUSION

The COSMOS platform can be characterized as a SIoT
platform since it defines, monitors and exploits social relations
and interactions between the VEs and uses technologies from
the domain of the social media. The social side of COSMOS
improves the knowledge flow, which is of great importance
for the constant evolution of the IoT systems, and introduces
the concept of experience sharing between Things. However,
one of the main concerns regarding the success of such an
architecture is its potential to maintain an opportunistic IoT

system, offering the human users motives to share the
knowledge and IoT-services of their VEs.

ACKNOWLEDGMENT

The research leading to these results is partially supported
by the European Community’s Seventh Framework
Programme under grant agreement n 609043, in the context of
the COSMOS Project.

REFERENCES

[1] COSMOS project: http: //iοt-cosmos.eu/.

[2] IoT-A: http: //www .iοt-a.eu/public.

[3] Social Internet of Things: http://www.social-iot.org/.

[4] IBM. “An architectural blueprint for autonomic computing.”,
Autonomic Computing White Paper, June 2005, Third Edition.

[5] O. Voutyras, S.V. Gogouvitis, A. Marinakis, T. Varvarigou,
“Achieving autonomicity in IoT systems via situational-aware,
cognitive and social things”, in press.

[6] N. Guarino, “Formal ontology and information systems”,
Formal Ontology in Information Systems, FOIS 98, pages 3–15,
Trento, Italy, June 1998. Ios Press.

[7] D. Kyriazis and T. Varvarigou, “Smart, Autonomous and
Reliable Internet of Things”, 4th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN), Niagara Falls, Canada, 2013.

[8] CISCO. “The Internet of Things, Infographic”, 2011.

[9] J. Rowley, The wisdom hierarchy: representations of the DIKW
hierarchy, Journal of Information Science 33(2) (2007) 163-180.

[10] A. Aamoth and E. Plaza, “Case-Based Reasoning: Foundational
Issues, Methodological Variations and System Approaches”,
Artificial Intelligence Communications, 1994, pp. 39-59.

[11] S. Dutta, and P. P Bonissone, “Integrating case- and rule-based
reasoning”, International Journal of Approximate Reasoning,
Volume 8, Issue 3, May 1993, 163–203, Elsevier.

[12] Z. Budimac and V. Kurbalija, “Case Based Reasoning – a short
overview”, Proceedings of the Second International Conference
on Informatics and InformationTechnology, pp222-233.

[13] V. Supyuenyong and N. Islam,. “Knowledge Management
Architecture: Building Blocks and Their Relationships”,
Technology Management for the Global Future, 2006. PICMET
2006 (Volume:3).

[14] U.M. Borghoff and R, Pareschin, “Information Technology for
Knowledge Management”, Springer, 18 Mar, 1998 - 232 pp.

[15] J. Guare, “Six Degrees of Separation: A Play”, Vintage Books,
1990.

[16] A. Rodriguez, “RESTful Web Services: The basics”, Developer
works page REST, Nov. 2008.

[17] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social
Internet of Things (SIoT) – When social networks meet the
Internet of Things: Concept, architecture and network
characterization”, Computer Networks, Volume 56, Issue 16, 14
Nov. 2012, pp 3594–3608.

[18] H. Al-Qaheri, S. Banerjee, and G. Ghosh, “Evaluating the power
of homophily and graph properties in Social Network:
Measuring the flow of inspiring influence using evolutionary
dynamics”, Science and Information Conference (SAI), 2013.

[19] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “Opportunistic IoT:
Explorig the social side of the internet of things”, Computer
Supported Cooperative Work in Design (CSCWD), 2012 IEEE
16th International Conference.

[20] S. Wasserman and K. Faust, “Social Network Analysis:
Methods and Applications”, Structural Analysis in the Social
Sciences, Chambridge Univeristy Press.

