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Abstract—The integration of social networking concepts into 

Internet of Things systems is a burgeoning topic of research that 

promises to support novel and more powerful applications. In 

this paper we present the social approach that the COSMOS 

project introduces in order to achieve enhanced services like 

discovery, recommendation and sharing between Things 

enriched with social properties. We investigate how typical 

notions and modes of interactions of social networking can be 

extended to the networks of Things, providing a Social Internet 

of Things platform, and we discuss two main components 

supporting the socialization of Things; Social Monitoring and 

Social Analysis. The first one involves all the main tools and 

techniques needed for the monitoring of the social properties of 

the Things, whereas Social Analysis is used for the extraction of 

their complex social characteristics, as well as models and 

patterns regarding their behavior and relations between them. 

Keywords—Internet of Things; Social Network Analysis; Social 

Internet of Things 

I. INTRODUCTION 

The Internet of Things (IoT) will exponentially increase the 
scale and the complexity of the formed networks. The world of 
trillions of Things and the different administrative domains on 
which they operate, require new approaches that will make 
Things able to cooperate in an open and reliable way. Taking 
into consideration the rate at which IoT devices are deployed 
and used in different applications, one of the main challenges 
refers to the efficient and optimized management of these 
entities. Existing centralized management approaches are 
proven inefficient when applied in systems with a huge number 
of Things or not applicable due to communication problems, 
something that highlights the need for distributed management 
approaches. Moreover, approaches are required that will allow 
management decisions to incorporate situational awareness and 
propose management actions based on them. Finally, an 
additional challenge with respect to IoT management relates to 
the autonomous reasoning of Things on a context-aware basis. 
Autonomous management will integrate different types of 
knowledge (e.g. device-specific, situational, application-
specific, administration-related etc) and trigger decisions 
accordingly. Autonomicity depends strongly on how much 
situational-aware, cognitive, smart and social the Things are 
[1]. Smart objects able to communicate and to discover their 
situation are already available, while various proposals aimed 
at giving social-like capabilities to Things exist [2]. However, 

the IoT vision can be fully achieved only with actual social 
networks that allow Things to cooperate in an open and reliable 
way and guarantee the effectiveness and scalability of the 
system. 

To this direction, in order to overcome the aforementioned 
inefficiencies, the COSMOS project [3] will provide a 
framework for the decentralized and autonomous management 
of Things based on service-, interaction-, location- and 
reputation-oriented principles, inspired by social media 
technologies. Following the IoT-A reference model [4], the 
architecture supports real-virtual world integration by 
representing Things of the real world via their counterparts in 
the Cyberworld: Virtual Entities (VEs). VEs acquire perception 
through accessing sensor readings and can impact their 
environment or undertake physical actions using actuators via 
IoT-services. Moreover, they may have their own goals and be 
equipped with an internal logic in order to achieve them. VEs 
may form groups, called Groups of Virtual Entities (GVEs), 
that aggregate a potentially large number of them. GVEs can 
embed other GVEs too, resulting in communities where social 
behavior is more than necessary. Like VEs, GVEs have their 
own properties, based on properties of embedded individual 
VEs, and their own objectives (often management and 
optimization functions). 

VEs and GVEs may interact for various purposes, such as 
collaboration (sharing a common goal), cooperation (getting 
help from other VEs in order to achieve specific objectives), 
advertising of their properties/attributes, offering actuation 
services etc. In other words, they have to operate as social 
actors and have a set of dyadic ties between them. Thus, it is of 
major importance to enhance the VEs with the key features of 
a social intelligent entity. A VE that has social characteristics 
can discover and provide services in its social networks. It can 
acquire knowledge through various means, such as learning 
from experience, and can reason with knowledge to make 
plans, explain observations etc. Ontologies were chosen to 
describe VEs and GVEs, as they provide a rich vocabulary for 
the general domain knowledge. Moreover, formalization of 
ontologies improves retrieval, similarity adaptation and 
learning [5]. 

Our approach supports the definition and the establishment 
of social properties and relations between VEs and provides 
the functionality required to form a social network following 
the Social Internet of Things (SIoT) paradigm [6]. 



It should be mentioned that during our analysis, we keep 
separate the two levels of people and Things, thus allowing 
Things to have their own social networks and humans to 
impose rules to protect their privacy and to access only the 
result of autonomous Things interactions occurring on the 
virtual social world. Socially-enriched coordination considers 
the role and participation scheme of VEs in and across 
networks. Management decisions and runtime adaptability is 
based on Things security, trust, location, relationships, 
information and contextual properties. Extended complex 
event processing and social media technologies extract only the 
valuable knowledge from the information flows, while 
workload-optimized data object stores facilitate efficient 
storage by also exploring the interplay between storage and 
analytics on networks of data objects. 

The social network perspective provides a set of methods 
for analyzing the structures of whole social entities and their 
networks. For the study of these structures, we use Social 
Network Analysis (SNA) [7] to identify local and global 
patterns, locate influential entities and examine network 
dynamics. To this direction, in order to manage social relations 
and interactions between the VEs, we introduce into the 
COSMOS control loop [8] two components: Social Monitoring 
and Social Analysis. 

The rest of this paper is organized as follows: Section II 
describes our proposed architecture. Section III identifies 
social relations and introduces the Social Monitoring 
component. Section IV discusses the issue of social links 
establishment and proposes recommendation mechanisms and 
criteria. Section V analyzes some further functionalities of the 
Social Analysis component. Section VI presents some suitable 
computational models and social network tools. Finally, 
Section VII concludes the paper. 

II. OUR ARCHITECTURE 

From our point of view, there are three elements that would 
justify the characterization of a platform as a SIoT platform: 

 it maps the social relations and interactions of the 
individuals, companies etc. to their VEs, 

 it defines, monitors and exploits social relations and 
interactions between the VEs, 

 it uses technologies and exploits services from the 
domain of social media. 

In this paper, we mainly focus on the second element. In 
this direction, we define social properties and relations 
between VEs. The COSMOS social ontology [9] is used to 
enrich the VEs description with social properties like VEs’ 
Domain, Location, Trust, Reputation etc. It contains all the 
relevant to the VEs data that can be used to infer social 
connectivity between them and evaluate their performance 
upon request from any VE. This way, the platform is always 
informed of changes to the social characteristics of the VEs 
and dynamic social behavior is achieved. In order to exploit 
these social properties and behaviors, we develop components 
and mechanisms that support the socialization of VEs. 

The Profiling and Policy Management (PPM) component 
assigns a unique ID to a VE and enables the entry of all the 
information needed for the description of the physical entity 
through the domain ontology of the corresponding VE. 
Moreover, it enables the owner to determine the social 
“openness” of the VE: the IoT-services that can be used by 
other VEs, the kind of experience that can be shared, the sets of 
VEs which can access such information etc. However, the 
“openness” of VEs is affected by the social selfishness, a basic 
attribute of human beings. Thus, the concept of Opportunistic 
loT [10] should be taken under consideration. 

The need for effective and decentralized discovery of 
experience and IoT-services brings us to the most important 
social concept that has to be implemented: friendship between 
VEs. This relationship will be a guideline, a road map of 
communication, as each VE will maintain a group of VEs (a 
friend list) which have been deemed to be in a position to 
provide or receive help from it. Friendship is considered as a 
non-mutual relationship, which means that the concept of 
“Friends” matches this of Twitter “Followers” rather that of 
Facebook “Friends”. The choice of Friends is based on other 
social properties included in the COSMOS social ontology like 
VEs’ Domain, Location, Trust, Reputation etc. 

The Friends Management (FM) component is responsible 
for creating and maintaining the list of friends that a VE has. In 
other words, it allows VEs to initiate, update and terminate 
their friendship with other VEs on the basis of the owner’s 
control settings. It provides the owner with the option of 
setting new friends to his/her VEs, offers friend-
recommendation request services and monitors the friend list 
of a VE regularly or on demand. 

In order to achieve self-management and autonomicity we 
follow the MAPE-K model [11], as we estimate that it is very 
close to the nature of the IoT management. Each VE maintains 
its own Knowledge Base (KB), part of which is a Case Base 
(CB) [12] where experience can be found. Storage of 
experience in a local or central KB [13] depends on whether 
the individual’s knowledge needs are constant or opportunistic. 
Such a categorization of needs will be primarily based on the 
“domain” membership of individual VEs as well as technical 
limitations that may be present. A KB can be shared between 
VEs with suitable social characteristics, something that 
improves the decision making mechanisms. Moreover, VEs 
representing weak devices that do not have their own KB can 
take advantage of the KB of their social group. However, by 
adapting the social view of the Things, we extend the MAPE-K 
loop by introducing two new components: Social Monitoring 
(SM) and Social Analysis (SA). 

The Social Monitoring (SM) component contains all the 
main tools and techniques that are used for the monitoring of 
the social properties of the VEs. Its main objective is to collect, 
aggregate and distribute monitoring data (events) across the 
decision making components (Planners) of the collaborating 
groups. The events are generated by interactions in response to 
- directly or indirectly - user actions (e.g. registering a new VE) 
or VEs’ actions (experience sharing). The Social Monitoring 
“feeds” the VE Registry and forwards its data to the Social 
Analysis component. 



The Social Analysis (SA) component, based on the results 
of the Social Monitoring component and taking advantage of 
Social Network Analysis (SNA), is used for the extraction of 
complex social structural characteristics of the VEs (e.g. 
centrality), as well as models and patterns regarding the 
behavior of the VEs and the relations between them. These 
social properties and relations that will be extracted could be 
used by the components of the project platform or even offer 
services directly to individuals. 

III. SOCIAL RELATIONS & MONITORING 

Instead of trying to map various social relations and 
characteristics of the real world to the IoT, a more concrete 
approach would be to identify the various interactions that 
could exist between VEs. Inspired from the social media 
domain, examples of these relations that are monitored are: 

Followees: The friends that are being tracked by a specific VE. 
The friends list (from now on Followees List) defines the 
receivers of the VE’s search requests. 

Followers: The VEs that track a specific VE. They are held in 
the Followers List and indicate the credibility and reputation 
of a VE. Moreover, their number can act as a rough indicator 
of the frequence of search requests from other VEs. 

Groups: To how many GVEs a VE belongs and how many 
VEs and GVEs (separately and in total) a GVE contains. A VE 
belonging to many GVEs gives us a measure of its “centrality” 
in the whole system and the real world, whereas the members 
of a GVE provide the main data needed to grasp its size and 
complexity. 

The relation  between a VE and its Followees is trust-based 
and non-mutual (low reciprocity [14]). This means that VE1 
may use the experience of VE2, but on the other hand, VE2 
may not do the same for VE1. A VE (trustor) trusts blindly its 
Followees (trustees) and requires access to their experience. 

On the same spirit, examples of interaction metrics that are 
used are: 

Shares: How many times a VE has shared its knowledge with 
other VEs. This value is used as an indicator of the reputation 
of the VE. However, for a more valuable evaluation, the 
number of followers, the amount of the shareable resources and 
the number of the received requests should be taken under 
consideration. 

Mentions: How many times an IoT-service of a specific VE is 
mentioned in the Case Base of other VEs. This is another 
indicator of the reputation of a VE. 

Applauses: How many times the social shares have been 
regarded as useful from the receivers. This value could be used 
as an indicator of the trustworthiness of the VE. This is a quite 
important property but rather difficult to monitor, compared to 
other elements, as feedback is needed. 

The interaction metrics (Shares, Mentions and Applauses) 
are maintained in the Followees List. In other words, the 
Friends Management component is responsible to update them. 
They are calculated in a distributed manner by the VEs on a 
per-VE basis and are the main input for the Social Analysis 

that will follow. For each metric identified we develop/choose 
the corresponding Key Performance Indicators (KPIs) and 
tools that should be imported into the VE during the phase of 
registration. Based on the chosen configuration, different levels 
of reporting granularity would be possible in order to keep the 
monitoring tasks as light-weight as possible but still to be able 
to perform in depth analysis whenever needed. The events that 
are generated at the Social Monitoring level can be evaluated at 
different platform levels (node level, group level or system 
wide) against a set of rules. The rules, which can be added, 
deleted or updated at runtime, may be specified by the 
consumers of information to set and control the flow of events 
and the aggregation output. 

All the above are a good starting point for social 
characterization and accelerate the discovery mechanisms as 
they reduce significantly the target groups. It should be 
mentioned that a quite complex approach is used, as we can 
monitor how many times two specific VEs have (succesfully) 
exchanged experience with each other. Instead of just 
monitoring that “VE1 shared its experience 1302 times”, if 
needed, we can know that “VE1 shared its experience with 
VE2 203 times, with VE3 523 times…”. It is obvious that in 
order to choose the best set of relations we need to study 
various types of representative applications and observe the 
interactions involved. 

The aforementioned metrics feed the social properties of 
VEs, as they are expressed by the COSMOS social ontology. 
More specifically: 

The Reputation Index is a property which indicates the total 
Shares and Mentions a VE has. It is a cumulative and 
comparative indicator. 

The Trust Index of a VE is a property which states how many 
times a VE has successfully shared its CB and can be 
calculated as the ratio of the total Applauses from its Followers 
to the total Shares to its Followers. Coupled with the concept 
of feedback and through refinement of its calculation, we can 
use this index as a means to simulate social mobility in the 
platform, as Trust will be one of the most important 
components of friendship recommendation. 

The Reliability Index is an absolute indicator of the 
performance of the Physical Entity that quantifies its efficiency 
to complete successfully the experience-sharing mechanism 
relatively to its ideal or normal operation. 

Our main goal is to combine Reputation, Trust and 
Reliability and express them by only one social measure, the 
Dependability Index of the VE. This measure, which is 
further discussed later, is a crucial indicator that will lead a VE 
to take decisions regarding the selection of new experience or 
new Followees.  

The relationship between Followers and Followees can be 
better understood by the following mechanism: Whenever a 
VE decides to initiate the decentralized discovery mechanism 
of experience, it targets its Followees List in its KB. The 
number of its Followees defines the depth of communication. 
That is important mainly because of the recursive way the 
discovery mechanism works, meaning that if a Followee of the 
original VE does not locate a suitable answer in its own KB, it 



will check the depth required (mentioned as TTL/time-to-live 
of the query) and initiate a new version of search, this time 
directed at its own Followees. Therefore, brokers are 
dynamically designated taking into account that Followees are 
willing and able to act as such for their respective Followers. 
By defining an appropriate upper limit for the ttl, the recursive 
nature of the discovery mechanism does not cause the social 
equivalent of an infinite network loop. The corresponding 
mechanism works by using the number of the specific VE’s 
Followees and a number indicating the maximum population 
coverage that the request should reach. Following the theory of 
‘six degrees of separation’ [15], the output is a number 
between one and six and indicates the maximum search depth 
that this VE can initiate. Therefore, any requests received by 
this VE will be propagated by suitable downwards 
modification of the incoming ttl number. 

IV. SOCIAL LINKS ESTABLISMENT 

Trust among a VE and its Followees is a direct relationship. 
However, a VE can trust unknown VEs based on the 
recommendation of its Followees or the recommendation of 
the SA. 

A. Followee Acquisition 

The process of Followee acquisition begins at the phase of 
registration. The user can manually set the Followees List of 
the VE (e.g. in order to link his/her VEs with each other). This 
is the most basic way a VE forms social bonds. Such friends 
will have a number of benefits during the social monitoring or 
discovery phases (e.g. greater priority). Recognizing the 
opportunity of a malicious user trying to create a Trust block 
and therefore create imbalances in the social network through 
collusion, the platform takes into account the specific social 
characteristics of the registering VE and adds random suitable 
VEs in its Followees List.  

Another way of acquiring Followees is through a discovery 
mechanism, which is always based on  recommendation. 
Discovery through recommendation is more reliable and 
provides protection from malicious behavior. New Followees 
can be  recommended to a VE by its current Followees or by 
the SA component. 

In the first case, transitivity is used (e.g. a VE1 
recommends to VE2 its own Followees as new Followees). 
After the VE acquires a number of recommended Followees, it 
asks the SA component for their Dependability Indexes. The 
SA component calculates the indexes, as it will be discussed 
later, and forwards the result back to the VE. Finally, the FM 
component of the VE, based on the thresholds set by the user, 
decides whether it will accept the new recommendations or 
not. 

In the second case the VE sends a Followee 
recommendation request to the SA component. Practically, this 
leads to the renewal of its Followees List.  The VE’s FM sends 
the request, passing as parameters weights for calculating the 
Dependability Index, a minimum acceptable limit of its value 
and the current Followees List. The SA calculates the 
Dependability of the Followees, based on the above input. If 
the new indexes are bellow the limit, the SA purges these VEs 

from the list, replacing them with more reliable ones, and a 
new Followees List is returned. Followees that have been set 
by users are not thrown away, but they are isolated. 

B. Recommendation Criteria 

The choice of suitable Followees is based on three 
composite criteria: Relevance, Dependability and Structural 
Power. Relevance aggregates the concepts of Homophily 
(Domain and Physical Entity attributes in our social ontology) 
and Distance Proximity (Location & GeoLocation), 
Dependability refers to Reputation, Trust and Reliability, while 
Structural Power is evaluated by several structural network 
characteristics. Our goal is to combine all these criteria in order 
to obtain the “Social Power” of a VE [16]. 

 

Fig. 1. The Social Power of a VE. 

1) Relevance/Similarity 

The basic criterion for choosing a new Followee, which 
will most probably have useful cases in its CB, mainly depends 
on its similarity to the VE, regarding both its nature and its 
environment. As a result, two properties have to be studied: 

Homophily/Heterophily: the degree to which VEs and GVEs 
form ties with similar/dissimilar others. Similarity can be based 
on domain-dependent social characteristics of the VEs as they 
are described in their social ontology. Homophily leads to the 
formation of homogeneous groups, where the relationships are 
easy to build. However, for VEs associated with more 
domains, heterophily is desirable. These two aspects aim at 
providing more beneficial friend recommendation services. For 
example, the homophily value is taken under consideration 
from friend recommendation services when the sharing 
requests concern experience. In the case of requests concerning 
IoT-services sharing, the opposite characteristic, the 
heterophily value, is extracted. In general, various 
recommendation algorithms could be developed incorporating 
both values [17]. 

Propinquity: The tendency for VEs to have more ties with 
geographically close others. The mobility of Things should be 
taken under consideration [18]. 

2) Dependability  

On the subject of the calculation of the Dependability 
Index, the developed solution is a platform specific service that 
is initiated by the SA component and entails the querying of 
Followers of a specific VE. We refer to this VE as “Evaluated 
VE”. The first action of the SA is to acquire the Followers List 



of the Evaluated VE. The SA extracts the group of Followers 
of the EvaluatedVE and then randomly decides which ones and 
how many of them to use as a querying basis (if their number 
is too great). This element of randomness is essential in the 
development of the mechanism, as it can prevent collusions 
which may alter the final result of the evaluation process. After 
this step, the SA requests the stored Applauses, Mentions and 
Shares for the EvaluatedVE from the Followees List of each 
Follower of the VE. After receiving the requested metrics, the 
SA component calculates both the Trust and the Reputation 
Indexes which, combined with certain weights defined by the 
user, result to the Dependability Index. It should be noted that 
for the calculation of the Dependability, the EvaluatedVE itself 
does not provide any information at all, but instead, all the 
information needed is offered by its social environment. 

3) Structural/Social Analysis Properties and Metrics 

As we already discussed, the analysis and formalization of 

social relations among Things is critical and the computation 

of social measures is necessary. They improve the 

effectiveness of the system as they help in taking decisions at 

many levels. However, the analysis of social networks is 

basically related to their structural analysis. Social network 

analysis is the analysis of social networks viewing social 

relationships in terms of network theory. These relationships 

are represented by nodes (individual actors within the network) 

and ties (relationships between the individuals). The 

computation of structural power is considered to be a step of 

high importance.   

At a first level, it is important to refer to some SNA 

properties and discuss the way they can help us identify the 

key nodes, the relationships strength (ties strength) and the 

cohesion of our social networks. There is a great variety of 

metrics that could be used under the functionalities of the 

Social Analysis, offering more detail and information about 

the networks being analyzed. The main metrics that have been 

identified and whose role is evident even at the early steps of 

the Social Analysis component are: 

Centrality: Centrality refers to a group of metrics that aim to 
quantify the importance or influence (in a variety of senses) of 
a particular VE or group of VEs within the network. Examples 
of common centrality metrics include degree centrality, 
closeness centrality, betweenness centrality, eigenvector 
centrality, alpha centrality etc [19]. Centrality is one of the 
main metrics that should be taken under consideration from the 
recommendation services. 

Distance (Shortest Path): The minimum number of ties 
required to connect two particular VEs, as popularized by 
Stanley Milgram’s small world experiment and the theory of 
‘six degrees of separation’. This theory introduces the idea that 
each node in a freely emerged network can be reached by 
propagating items of information via six hops. Distance is 
important as it is involved in various other measures, e.g 
closeness centrality and betweenness centrality. Closeness 
centrality is distance-based and increases when the distance 
between nodes decreases, while betweenness centrality is a 
measure of the number of shortest paths in a network that 
traverse the node. 

Tie Multiplexity: The number of content-forms contained in a 
tie of a dyad of VEs, in other words how many relationships 
represents a tie. For example, two VEs that can share 
knowledge will have a tie with multiplexity of 1, whereas, in 
case they can share IoT-services too, they will have a tie with 
multiplexity of 2 and so on. Multiplexity is associated with 
relationship strength and durability and may be an indicator of 
network effectiveness. Some other kinds of relationships that 
can be defined and affect the multiplexity of ties are presented 
in [6] and are the Parental object relationship, the Ownership 
object relationship, the Co-location object relationship etc. 

Cohesion: The degree to which VEs are connected directly to 
each other by cohesive bonds. Structural cohesion refers to the 
minimum number of members who, if removed from a group, 
would disconnect the group. This characteristic is quite 
important when reconfiguration of a group of VEs must take 
place. 

Density: The proportion of direct ties in a network relative to 
the maximum possible number of them. When density is close 
to 1, the network is dense and can resist to tie failures more 
easily, otherwise it is sparse. For density 1 the network is 
called a clique. Density is related to the speed with which 
information is diffused among the actors and is useful in 
comparing networks or different regions of a single network. 

Centralization: An aggregate metric that characterizes the 
amount to which the network is centered on one or a few 
important nodes. 

Clustering coefficient: A measure of the likelihood that two 
randomly selected neighbors of a node are connected to each 
other. It represents the density of a node’s neighborhood. A 
higher clustering coefficient indicates a greater ‘cliquishness’ 
[20]. For an entire network it is computed as the average of all 
its nodes’ clustering coefficients and represents the tendency to 
form clusters and groups. 

Structural holes & Bridges (Mediators): The structural hole 
concept, developed by sociologist Ronald Burt and sometimes 
called social capital [21], refers to the lack of ties between two 
parts of a network. The structural holes theory introduces the 
concept of bridges or mediators as individual actors that fill a 
structural hole, thus connecting two previously unconnected 
(or at least loosely coupled) actors and gain valuable insights in 
others work. Finding and exploiting a structural hole can offer 
novel and competitive innovation opportunities [22]. In our 
approach, mediators could be used to facililate the 
communication between VEs and GVEs. Mediators can 
influence partners and build high reputation. 

Other network level analysis metrics include average 
distance (average distance between all pairs of nodes), metrics 
that integrate attribute data with network data (for example, 
metrics that measure homophily) etc. 

The structural metrics discussed above give us the 
opportunity to identify the key VEs in the network. The 
centrality metrics bring out the nodes of great ‘importance’. 
For example, the degree centrality is a measure of a VE’s 
connectedness and represents the number of friends it has in its 
neighborhood. The beetweness centrality (BC) is a measure of 
how often a VE is the most direct route between two other VEs 



and represents its potential to act as mediator. The closeness 
centrality (CC) represents how fast a VE reach every other in 
the network, whereas the eigenvector centrality (EC) represents 
how well a VE is connected to other well-connected VEs. 

Of course, the importance of a VE depends on the context 
and use case. For example, in the home automation domain, 
high degree centrality may indicate the key room in a building, 
in the smart city domain, VEs of high betweeness that bridge 
various communities may be of great importance, while in the 
transport domain, VEs of high eigenvector that influence the 
whole network may be of greater significance (Table 1). The 
various metrics are correlated and they do not necessarily have 
the same tension. A VE with high eigenvector may not have 
high closeness and/or high betweeness, meaning that it does 
not have the greatest local influence and/or it has low 
bridgering potential. 

TABLE I.  TYPES OF CENTRALITY AND VES’ ROLES 

 
Metrics Interpretation 

High BC High CC High EC 

VE 

Role 

Mediator Group Leader 
Network 

Influencer 

Reciprocity and multiplexity metrics bring out the tie 
strength. However, the aspects of heterogeneity, such as 
diversified bonds and/or dissimilar nodes, add more 
complexity. SNA could be enhanced by the use of tie weights 
(weighted network). Ties weighted in relation to frequency of 
interaction, influence, capacity etc. provide a more real world 
indication of the dynamics of a particular network. They affect 
the path that information takes, the speed it travels and may 
characterize the nodes that use them as more or less key ones. 
Thus, centrality measure results are affected by tie weightings. 
Moreover, centrality is affected by ties between dissimilar VEs 
(multimodal network). A metric such as betweenness centrality 
applies to uni-modal networks and there is no clear definition 
in a multimodal one. All these mean that new algorithms are 
required for the calculation of centrality for weighted and 
multimodal networks. 

At this point, it should be noted that, while some VEs 
relationships will be defined by the users, a great percentage of 
them will have to be appointed by the COSMOS platform. As 
a result, the case we study here is not just of an independent 
system from which some metrics are extracted for research, but 
instead a system where many times new relationships are 
appointed dynamically depending on known desired values of 
these metrics. In other words, instead of extracting the 
properties of an existing graph, we create a graph based on the 
desired values of the properties. Consequently, the creation and 
maintenance of the VEs’ social environment is reduced to 
determining the proper metrics and their corresponding values. 

In general, VEs social networks will be self-organized, 
emergent and complex [23], such that globally coherent 
patterns will appear from the local interaction of the elements 
that make up the system. These patterns will become more 
apparent and rich as the size of the network increases. 
However, a global network analysis of all the relationships 
between millions or billions of VEs is not feasible and is likely 
to contain so much information as to be uninformative. The 

nuances of a local system may be lost in a large network 
analysis, hence the quality of information may be more 
important than its scale for understanding network properties. 
Thus, social networks should be analyzed at the proper scale, 
depending on the application or the needs of a user or a 
functional component of the platform. Generally, there are 
three scale-levels into which networks may fall: micro-level, 
meso-level and macro-level [24]. At the micro-level, social 
network research typically begins with tracing inter-VE 
interactions in a small group of a particular domain. Meso-
level analysis begins with a population size that falls between 
the micro- and macro-levels and may also refer to analysis that 
is specifically designed to reveal connections between micro- 
and macro-levels. At last, macro level analysis generally traces 
the outcomes of interactions over a large population. It 
becomes quite evident that, in case we have to take decisions at 
system level regarding e.g. the reconfiguration of some 
entities, this kind of analysis becomes really important. 

V. OTHER FUNCTIONALITIES OF THE SOCIAL ANALYSIS 

COMPONENT 

The services and functionalities of the Social Analysis 
component will be used by both the users (External use) and 
other functional components (Internal use). From the plethora 
of the metrics available and the social interactions that can be 
monitored, it is quite evident that the Social Analysis 
component can provide a great number of functionalities, 
depending on the needs of the system. Briefly, the 
functionalities that have already been presented in the paper 
are: 

Computation of Dependability Index 

Recommendation of VEs: By finding the similarities between 
VEs or identifying the needs of a specific VE, it is possible to 
provide many recommendation services. One representative 
example is the friend-recommendation service (Fig. 2).  

Extraction of structural characteristics of the networks: 
There are many properties of the networks that could be 
analyzed without direct modelling and could be of great use for 
recommendation services. Questions that could be addressed 
are whether there is any “leak of knowledge” from one 
team/cluster to another, if so, how fast that knowledge flows, 
whether a team has any weak points that can be structurally 
overcome etc. A representative example is the discovery of 
structural holes. Networks rich in structural holes are a form of 
social capital in that they offer information benefits. COSMOS 
could make recommendations to fill in these structural holes 
and exploit the social capital. 

Some other of the main functionalities that have been 
studied and we work on are the following: 

Extraction of relational-models: Another functionality of the 
Social Analysis component is the extraction of Relational 
Models. Such models are the Communal Sharing (behaviors of 
VEs with collective relevance e.g. a service offered by an 
entire swarm of VEs), Equality Matching (VEs operate as 
equals and request/provide information among them in the 
perspective of providing IoT-services to users while 
maintaining their individuality), Authority Ranking 



(established between VEs of different complexity and 
hierarchical levels) and Market Pricing (VEs working together 
in the view of achieving mutual benefit and participating in this 
relationship only when it worths doing so) [25]. 

Modelling and Visualization of networks: Visual 
representations of social networks help to understand features 
of the network that are not easily identifiable and convey the 
result of the analysis. Collaboration graphs are used to 
illustrate the quality of relationships between VEs based on 
characteristics such as the evolution of their Trust and 
Reputation. Moreover, the network propagation modelling can 
be included in this functionality. 

Extraction of higher-level goals of VEs: A desired feature is 
the comparison of the same targets/goals of the VEs and the 
extraction of more abstract goals that will characterize certain 
groups, based on homophily and propinquity metrics. 

User attribute and behavior analysis: COSMOS could 
support activities such as customer interaction and analysis, by 
analyzing the results of monitored interactions such as the 
popularity of the IoT-services or the Case Base of a VE among 
the users. The prediction of the potential demands of people 
regarding new services and knowledge is an interesting topic 
of research [26]. 

 

Fig. 2. Management components in the COSMOS architecture. 

VI. COMPUTATIONAL MODELS AND SOCIAL NETWORK TOOLS 

There are many tools that can be used from the Social 
Analysis component and a need for the development of new 
tools may exist. Social network and dynamic network metrics, 
trail metrics, procedures for grouping nodes, identifying local 
patterns, distance based, algorithmic and statistical procedures 
for comparing and contrasting networks, groups and 
individuals from a dynamic meta-network perspective, geo-
spatial network metrics, identification of key players, groups 
and vulnerabilities, are but a few issues that have to be 
addressed. 

Some of the main tools that we take under consideration 
are: 

 Representation Formats, markup languages and 
ontologies: DyNetML and GraphML could be used as 
a reference model. 

 Dynamic Network Analysis and Social Network 
Analysis: Tools for reasoning under varying levels of 

uncertainty about dynamic networks, their 
vulnerabilities and their ability to reconfigure 
themselves, choosing Dynamic Network Analysis 
(DNA) metrics and then using one or more of the 
available optimizers to find a design that more closely 
meets an ideal as well as exploring network graphs. 
The dynamic network visualization has been a 
challenging topic due to the complexity introduced by 
the extra dimension of time [27]. Some tools that have 
been studied are ORA, IGraph, Networkx and Pajek 
[28],[29]. 

 Network Document Analysis and Data Entry: Tools 
that enable the extraction of information from texts 
using Network Text Analysis methods and other 
techniques. A typical tool that has been studied is 
SocIoS [30]. 

VII. CONCLUSION 

The COSMOS platform can be characterized as a SIoT 
platform since it defines, monitors and exploits social relations 
and interactions between the VEs and uses technologies from 
the domain of the social media. The Social Monitoring and 
Social Analysis components improve the mechanisms used to 
establish social links that facilitate cooperation and enable 
selective sharing of knowledge and IoT-services through 
recommendation services. To sum up, in this paper we go 
beyond the state of the art by: 

 identifying and establishing social properties and relations 
between VEs in such a way that the resulting social 
network is effectively manageable; 

 describing a decentralized IoT architecture which supports 
the functionality required to form a social network 
following the Social Internet of Things paradigm. We 
discuss some services and mechanisms, like distributed 
relations management and decentralized discovery 
mechanisms. 

 studying social analysis metrics and properties and 
identifying roles for the VEs and desired functionalities for 
our SA component. 
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